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Abstract
Purpose – Highly anisotropic zirconium is a material used in the cladding of nuclear fuel rods,
ensuring containment of the radioactive material within. The complex material structure of anisotropic
zirconium requires model developers to replicate not only the macro-scale stresses but also the
meso-scale material behavior as the crystal structure evolves; leading to strongly coupled multi-scale
plasticity models. Such strongly coupled models can be achieved through partitioned analysis
techniques, which couple independently developed constituent models through an iterative exchange
of inputs and outputs. Throughout this iterative process, biases, and uncertainties inherent within
constituent model predictions are inevitably transferred between constituents either compensating for
each other or accumulating during iterations. The paper aims to discuss these issues.
Design/methodology/approach – A finite element model at the macro-scale is coupled in an iterative
manner with a meso-scale viscoplastic self-consistent model, where the former supplies the stress input
and latter represents the changing material properties. The authors present a systematic framework for
experiment-based validation taking advantage of both separate-effect experiments conducted within
each constituent’s domain to calibrate the constituents in their respective scales and integral-effect
experiments executed within the coupled domain to test the validity of the coupled system.
Findings – This framework developed is shown to improve predictive capability of a multi-scale
plasticity model of highly anisotropic zirconium.
Originality/value – For multi-scale models to be implemented to support high-consequence
decisions, such as the containment of radioactive material, this transfer of biases and uncertainties
must be evaluated to ensure accuracy of the predictions of the coupled model. This framework takes
advantage of the transparency of partitioned analysis to reduce the accumulation of errors
and uncertainties.
Keywords Bayesian inference, Uncertainty propagation, Constitutive modeling, Model-form error,
Newton-Raphson
Paper type Research paper

1. Introduction
In partitioned analysis, independently developed constituent models are coupled
together by exchanging inputs and outputs, typically through iterative procedures[1]
(Felippa et al., 2001; Rugonyi and Bathe, 2001; Larson et al., 2005; Matthies et al., 2006;
Leiva et al., 2010). Such coupling eliminates the need for strong (and occasionally
unwarranted) assumptions about the interactions between multiple physical
phenomena (Lieber and Wolke, 2008) and results in representations of reality more
accurate and complex than the individual constituents themselves (Farajpour and
Atamturktur, 2012). Coupled models developed with partitioned analysis are becoming
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prevalent in solving multi-physics (Kim et al., 2009) and multi-scale (Gawad et al., 2008)
problems due to the many advantages partitioning provides, such as the ability to
exploit existing codes reducing code development costs and demands (Sorti et al., 2009).
Additionally, partitioned analysis renders a greater ability to solve high-complexity
problems (Ibrahimbegovic et al., 2004) and the ability to run parallelized simulations
(Park and Felippa, 1983). Hence, strongly coupled multi-scale and multi-physics models
are being increasingly used to support high-consequence decision making, such as
developing public policies, establishing safety procedures, and determining legal
liabilities regarding not only regular system operations but also accident scenarios.

Partitioned analysis of multiple scales is especially useful for predicting
time-dependent irreversible deformation in systems containing clear separation of
scales, such as creep of hexagonal close packed zirconium (Wang et al., 2010). These
models are necessary for understanding complex material behavior under high
temperatures and stresses, such as those experienced by nuclear reactor cladding,
large engine fan blades, etc. Homogenization techniques such as the classic
Taylor model are not suitable for modeling the constitutive behavior of these
systems (Wang et al., 2010; Segurado et al., 2012), since obtaining accurate
representations of the system response in extreme conditions is only possible when the
high anisotropy and low symmetry of the crystals is accounted for through interactions
between crystals. For this purpose, finite element (FE) methods are being implemented
at the macro-scale to model the elastic response of the material, while single-crystal
and polycrystal models are being used to represent the meso-scale viscoplasticity
taking the microstructure texture evolution into account (Delannay et al., 2006; Roters
et al., 2010; Knezevic et al., 2012).

These constituents, FE model in the macro scale and polycrystal models in the meso-
scale, while elaborate, inevitably provide idealized representations of reality with
inherent biases and uncertainties in each. If unaccounted for, these biases and
uncertainties may propagate between constituent models via the coupling interface,
compensating for each other or accumulating during iterations, ultimately resulting in
inferior predictive capability in the multi-scale coupled model. The effect of biases and
uncertainties can be assessed by comparing coupled model predictions to experiments
of the complete system (referred to herein as integral-effect experiments); and
constituent models to experiments within their respective domains (referred to herein
as separate-effect experiments) (Figure 1). An important benefit of partitioned analysis
is this transparency and the opportunity to exploit separate-effect experiments to

Constituent A

�A–B �B –A

Experiment B

Coupled domain
for integral effect

experiments

Constituent A
domain for

separate effect
experiments

Constituent B
domain for

separate effect
experiments

Experiment A

Constituent B

Experiment C

�A

�B

Figure 1.
Domain of separate-
effect and integral-
effect experiments
demonstrated for a
coupling problem
consisting of two
constituents
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improve the predictive ability of individual components of a more complex, coupled
model. This improvement can be accomplished in two distinct, but interconnected
manners: inferring the bias in model predictions; and mitigating the uncertainty in the
model parameters (Kennedy and O’Hagan, 2001; Higdon et al., 2008; Farajpour
and Atamturktur, 2013). Herein, these two aspects are collectively referred to as
“model calibration.”

In this manuscript, the authors present a framework for experiment-based model
calibration and validation taking advantage of both separate- and integral-effect
experiments. The approach is demonstrated on the simulation of elasto-viscoplastic
material behavior of metallic specimens achieved by coupling a FE model in the
macro-scale and a self-consistent homogenization of polycrystalline behavior in
the meso-scale. The macro-scale FE model is imbedded with a meso-scale viscoplastic
self-consistent (VPSC) model at each integration point. The VPSC model updates
material properties, such as crystal structure, at each time step as the macro-scale
model is deformed (Knezevic et al., 2012). Error and uncertainty in the coupled model
are mitigated through model calibration at the meso-scale, where parameter calibration
and inference of model bias are completed using separate-effect experiments involving
the loading curve of a sample of zirconium material from a uniaxial tension-
compression test. Bias of the VPSC predictions is then corrected accordingly during
each coupling iteration. Model validation is carried out at the macro-scale in that the
predictions obtained through bias-corrected coupling process are compared against
integral-effect experiments that involve the deformation of a highly anisotropic
zirconium bar under a four-point bending load. This validation step demonstrates the
capability of the proposed treatment of model calibration in partitioned models to yield
improved accuracy in coupled model predictions.

This paper is organized as follows. In Section 2, the authors provide motivation for
the management of bias and uncertainty in partitioned models accompanied by
background discussion on the general framework of partitioned analysis. Next, an
overview of state-of-the-art for calibration and validation of coupled models is
presented in Section 3. The framework for experiment-based calibration and validation
of coupled models advocated herein, which utilizes both separate- and integral-effect
experiments, is discussed in detail in Section 4. Section 5 introduces the meso- and
macro-scale constituent models (VPSC and FE models) as well as the associated
coupling process for the case study application. The experimental campaign and
numerical model development for the zirconium case study are presented in Section 6.
The methodology is implemented in Section 7 for calibration and bias correction of
strongly coupled VPSC-ABAQUS model for zirconium material. Finally, concluding
remarks and key takeaways from the study are presented in Section 8.

2. Bias and uncertainty in coupled models
During coupling iterations, not only the constituent model predictions but also their
bias and uncertainty flow back and forth between the partitioned domains[2], as
illustrated in Figure 2. Uncertainty in constituent model parameters (θ in Figure 2)
causes variability in the coupled model predictions (Figure 2(a)), while bias in
constituent model predictions (ψA and ψB in Figure 2) results in deviations from truth
(Figure 2(b)). Occurring together, these biases and uncertainties may accumulate or
compensate for each other quickly becoming highly complex and difficult to trace
(Rizzi et al., 2012; Liang et al., 2015). The choice of coupling algorithm also influences
the solutions as each algorithm passes biases and uncertainties in a different manner
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ultimately resulting in convergence to different solutions (Kim et al., 2009) all of which
may appear physically credible. Figure 2 demonstrates the effects of these biases and
uncertainties on coupled model predictions in an isolated manner. Real systems,
however, experience the degrading effects of both simultaneously.

The propagation of these biases and uncertainties between constituents can cause
the coupling iterations to diverge or worse, converge to an incorrect solution as
demonstrated in Figure 2. Such inaccurate convergence is particularly worrisome, as it
may make the solution appear plausible, giving false confidence to the model
developers about inaccurate scientific findings (Kim et al., 2009). Such inaccurate
convergence has been observed in several applications in engineering and science
(Döscher et al., 2002; Estep et al., 2008; Kim et al., 2009; Bunya et al., 2010; Dietrich et al.,
2010; Kumar and Ghoniem, 2012a). Döscher et al. (2002), for instance, noted the
convergence of a coupled atmosphere-ocean model to incorrect sea ice area calculations.
The authors attributed this inaccurate convergence to bias in heat fluxes originating
from the atmospheric model, as the stand-alone ocean model with heat flux inputs from
experimental data rather than the atmospheric model produced better agreement with
sea ice area measurements. Kumar and Ghoniem (2012a) recognized bias in the
predictions of a coupled flow gasification model not only due to bias in the constituent
flow model, but also insufficient information being passed (i.e. missing parameters)
from the flow solver to the particle dispersion model, referred to herein as interface bias
(ΨA−B and ΨB−A in Figure 1).

Although biases and uncertainties inherent in constituent models are of a concern for
partitioned models, partitioning provides a unique transparency for their assessment and
mitigation. This transparency is due to the fact that variables shared to couple the
constituent models can be evaluated as outputs at the constituent levels prior to coupling.
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Figure 2.
Convergence of
coupled model
predictions to
incorrect solutions
due to (a) parametric
uncertainty and (b)
systematic bias
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Therefore, the transparency of partitioned models enables us to exploit separate-effect
experiments conducted within each domain to calibrate the constituent models. The
greatest advantage of partitioned analysis in the context of model calibration and
validation is arguably its ability to exploit separate-effect experiments that are often
more economical, less time-consuming and more feasible to conduct.

Figure 3 is a notional representation of the information flow as well as essential
variables of a partitioned model. In this figure, control parameters, x, define the
operational state of the system and are often known by both the experimentalist and
model developer; calibration parameters, θ, are those that are influential in model
predictions but whose exact values are uncertain and thus require calibration; and
remaining input parameters, z, are those that are necessary for operating the model but
are neither control nor calibration parameters. As shown in this figure, constituents
may have two basic types of inputs, dependent and independent. The dependent
parameters (dep in Figure 3) are the inputs to a constituent model that are dependent
upon another constituent’s output. Without coupling, these dependent parameters are
unknown to the model developer, thus requiring assumptions to be made regarding
their values. In addition, each constituent model may have independent parameters
(ind in Figure 3), which are required for executing the constituent model but are not a
function of another constituent’s output and thus, are simply specified by the model
developer. Control parameter, x, may be independent (meaning it is known for a
model) or dependent (meaning it is unknown and must be predicted by another model).
Similarly, z, can be either independent or dependent parameters. If the dependent
parameter becomes a control parameter, x, for another constituent model, the
propagation of uncertainty tends to be of higher concern than if the dependent output is
simply defining a system property, z (Haydon and Deletic, 2009). In our framework,
calibration parameters are those which are poorly known but do not depend on another
model’s output. Hence, according to our definition, calibration parameters are by
default independent parameters.

In a similar manner, constituents may have two types of outputs, once again
dependent and independent. Dependent outputs, ydep, are those that become an input
for another constituent, previously referred to as dependent parameters. Independent
outputs, yind, are those that are not transferred to other constituents. Separate and
integral-effect experiments can be conducted to observe either of these outputs,
resulting in a variety of options for model calibration. For instance, one may focus on
mitigating the uncertainty in calibration parameters, θ, in any one of the constituent

ycoupled

xA
ind, zA

ind, �A

xB
ind, zA

ind, �B

xA
dep, zA

dep

xB
dep, zB

dep

�A

�B

yA
ind

yA
dep

yB
dep

yB
ind

Figure 3.
Partitioned model
with independent

and dependent
model parameters
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models using either separate- or integral-effect experiments that measure dependent or
independent outputs. However, it is only when separate-effect experiments observing
the dependent outputs are implemented, that one can quantify the propagation of
uncertainty between models as well as determine the bias associated with constituent
model predictions which will be passed during coupling iterations. If such separate-
effect experiments are available, then correcting for said bias before it is transferred to
the next constituent becomes possible.

3. Background perspectives
In calibrating constituent models against separate-effect experiments prior to coupling,
the nature of calibration that can take place can be determined based on the types of
experiments available (independent or dependent). Separate-effect experiments measuring
yind enable the calibration of poorly known parameters. One such example is discussed by
Liu and Muraleetharan (2012) where several experimental techniques for capturing
separate-effect behavior relative to several outputs of the system are implemented for
calibrating constituent model parameters. Separate-effect experiments measuring
dependent outputs, ydep, on the other hand enables the evaluation of uncertainties as
well as biases in the constituent model predictions that are passed to other constituents
(Stevens and Atamturktur, 2015). Kumar and Ghoniem (2012a) took advantage of
separate-effect experiments of dependent outputs, but the information gained from these
was limited to tracking the propagation of uncertainties through the coupling process
rather than remedying the degrading effects of this propagation. Farajpour and
Atamturktur (2014) proposed an integrated coupling-uncertainty quantification
framework in which constituent model parameters were calibrated and bias was
quantified using separate-effect experiments. However, their study only considered bias
for the purpose of avoiding compensation for said bias by uncertain parameters during
calibration. Oliver et al. (2015) discuss the importance of not only quantifying and tracking
the propagation of bias and uncertainty in constituent models, but also correcting for
these factors at the constituent level, as they will affect responses of the coupled system.

Partitioned models can also be calibrated against integral-effect experiments.
Earlier studies have implemented integral-effect experiments for the calibration of
independent parameters in constituent models (Lin and Yim, 2006) as well as
calibration of independent parameters specifically related to coupling, in that these
parameters feed into both models (Liu and Muraleetharan, 2012). Using integral-effect
experiments, Farajpour and Atamturktur (2014) illustrated the importance of
considering both bias and uncertainty in constituent model calibration by training a
discrepancy model using integral-effect experiments to bias-correct the coupled
predictions. Integral-effect experiments are also highly valuable for validation of the
coupled model as the coupled domain is where predictions critical for decision making
will occur (Avramova and Ivanov, 2010; Kumar and Ghoniem, 2012b; Liu and
Muraleetharan, 2012). Korzekwa (2009) emphasizes the fact that validation of complex
models is important, as models of such complex systems often include components that
cannot be accurately modeled, despite efforts to reduce assumptions through coupling.
While validation of the coupled model through integral-effect experiments is necessary,
engineers are often faced with the challenge of validation data at the coupled level
being limited or unavailable (Kumar and Ghoniem, 2012b; Tawhai and Bates, 2011).
However, bias correction of constituents throughout the coupling process using
separate-effect experimental data combined with integral-effect experimental data for
validation is to our knowledge yet to be explored.
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4. Methodological approach
This study presents a framework for bias-corrected partitioned analysis, which begins
with model calibration of uncertain parameters and inference of model bias completed
within the constituent domain using separate-effect experiments. The application herein
relies upon the Bayesian approach of Kennedy and O’Hagan (2001) and Higdon et al.
(2008) for quantifying model bias. However, the framework for bias-corrected partitioned
analysis is not constrained to the Bayesian approach. Rather, the method by which this
bias is quantified is inconsequential to the way in which bias-corrected partitioned
analysis of said bias is applied to the prediction, and as such the method selected for
computer experiments. What is important, however, is the accuracy with which the
method for quantifying bias is able to train the discrepancy function (Stevens and
Atamturktur, 2015) as well as assessing the calibration of parameters and inference of
bias in a connected manner (Farajpour and Atamturktur, 2014). A variety of methods are
available for inferring bias in the constituents, starting with regression-based approaches
directly relating bias to tested control settings, be they as simple linear functions (Derber
and Wu, 1998), high degree polynomials where coefficients are determined stochastically
(Steinberg, 1985), up to non-parametric fits such as a Gaussian process model (Sacks
et al., 1989; Kennedy and O’Hagan, 2001; Bayarri et al., 2007), and continuing away to
methods for determining relationships between discrepancy and control settings such as
a maximum likelihood estimation of parameter distribution characteristics (Xiong et al.,
2009; Atamturktur et al., 2015b) or a copula-based approach (Xi et al., 2014).

4.1 Constituent model calibration
Consider the forward operator of a real physical process given by ζ(x), where x
represents the control parameter settings that define the domain of applicability of the
problem. Experimental measurements, y(x), conducted at a number of settings, n, are
our primary means to observe reality, but are noisy representations of the true
responses generated by the process ζ(x). Herein, we assume all observation errors are
independent and identically distributed as Gaussian, i.e. eiid� N 0;s2

� �
. Experimental

measurements are related to the real process by:

y x i� � ¼ z x i� �þe x i� �
; i ¼ 1; . . .; n (1)

In developing a numerical model, ƞ, to mimic the process ζ(x) within the domain of
applicability, two essential and intertwined aspects of the model must be defined.
The first of these involves a series of assumptions representing the mechanistic
principles invoked to establish a link between control parameters, x and model output;
and the second entails unknown (or poorly known) parameters, θ, whose meanings are
associated with the chosen mechanistic principles. The unknown parameter space is
explored by sampling the numerical model with specified input values, t, thus
generating a collection of simulations, where m represents the number of simulations:

Z x j; t j
� �

; j ¼ 1; . . .; m (2)

Assessing the process in a Bayesian context requires sampling the parameter
distributions by executing the model with different parameter sets (x, t). Markov chain
Monte Carlo (MCMC) is commonly used to explore the parameter domain as this
sampling, especially implemented with Metropolis Hastings algorithm, is well suited
for sampling an arbitrary distribution (Smith and Roberts, 1993; Beck and Au, 2002).
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However, MCMC sampling requires a large number of simulation runs, m, which may
not be feasible for problems in which the numerical model, ƞ, is computationally
demanding. Higdon et al. (2008) suggested the use of a Gaussian process model (GPM)
when computational demands of the numerical model exceed reasonable means for
MCMC sampling. A GPM is defined by a mean and covariance function, which relates
all input settings throughout the model (Williams, 1998; Rasmussen, 2004; Williams
and Rasmussen, 2006; Santner et al., 2013). By controlling the form of this covariance,
one can implement a representation of the model with desired smoothness throughout
the domain of applicability. In this study, the model GPM is defined by a constant mean
and a power exponential covariance as shown in the following equation, where λη and
ρη are hyperparameters of the GPM to be trained:

Cov x; tð Þ; x0; t0ð Þð Þ ¼ 1
lZ

Ypx
k¼1

r
4 xk�x

0
kð Þ2

Zk �
Ypt
k¼1

rZkþ pxþ k

� �4 tk�t
0
kð Þ2

(3)

Idealizations in the definition of the mechanistic principles causes biases in the model’s
output. Bias can be considered to be a model’s fundamental inability to replicate reality
due to incomplete representation of underlying physics or engineering principles
and may originate from missing input parameters; missing or incorrectly defined
relationships between control parameters and input parameters; or missing or
incorrectly defined relationships between input parameters. If biases are unaccounted
for during calibration, the parameters may be adjusted to values that mask the
presence of model error (Kennedy and O’Hagan, 2001; Higdon et al., 2008; Gaganis,
2009; Atamturktur et al., 2014; Farajpour and Atamturktur, 2013). As suggested by
Kennedy and O’Hagan (2001), we implement an additive approach in which the real
physical process ζ(x) is related to the numerical model with best estimate parameter
values, θ by:

z x i� � ¼ Z x i; h
� �þc x i� �

; i ¼ 1; . . .; n (4)

where η(xi, θ) is the model outputs and ψ(xi) is the model bias at each tested setting,
i and n is the number of experiments. Note that information regarding systematic bias
is only available at control parameter settings where experiments have been conducted,
x i. Hence estimating the bias for all other control settings, x requires that an
independent model is trained. This independent model, δ(x) is henceforth referred to as
“discrepancy.” There is likely to be limited information, if any, about the functional
form of δ(x). Kennedy and O’Hagan (2001) suggested modeling the discrepancy using a
non-parametric stationary Gaussian process in order to eliminate the need for
potentially strong assumptions regarding its model form. We can represent the
discrepancy over the domain of applicability (Higdon et al., 2008), once again using a
zero mean GPM with a covariance function (shown in Equation (5)) which maintains a
smooth, differentiable model fit throughout the domain. In this covariance function, λδ
and ρδ are hyperparameters of the GPM to be calibrated:

Cov x;x
0� � ¼ 1

ld

Ypx
k¼1

r
4 xk�x

0
kð Þ2

dk (5)

Now that all sources of uncertainties have been defined, we can relate the numerical
model predictions using best estimate parameters, η(x, θ), and the discrepancy
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function, δ(x), to experimental measurements at selected control settings, i, while also
taking experimental error, ε(x), into consideration, as shown in Equation (6):

y x i� � ¼ Z x i; h
� �þdðx iÞþe x i� �

i ¼ 1; . . .; n (6)

Missing physics in the constituent model is corrected for through the discrepancy
function, δ(x), which is trained to be an estimate of the model-form error, ψ(x). This
process of correcting for the inadequacy in the constituent model, referred to as “bias
correction,” is implemented to ultimately improve predictions of the coupled model.
Determination of the discrepancy function and calibration parameter values with
relation to each other prevents unwarranted compensations between parameters,
which may otherwise mask model bias (Kennedy and O’Hagan, 2001; Higdon et al.,
2008; Farajpour and Atamturktur, 2014; Stevens and Atamturktur, 2015). Approaching
this problem in the Bayesian context allows for calibration of the uncertain parameters
and discrepancy function simultaneously, while also providing a smooth incorporation
of the experimental errors in the calibration. This is done by simultaneously inferring
distributions for uncertain parameters, as well as the numerical model GPM
hyperparameters and discrepancy model hyperparameters, conditioned upon a vector
of sampled model outputs, η(x, t), and experimental data. Once the model is calibrated
at the constituent level, conditioned upon separate-effect experiments, the discrepancy
function can be implemented in an iterative manner to correct the constituent model
through bias-corrected partitioned analysis.

4.2 Bias-corrected partitioned analysis
In partitioned analysis, errors in constituents combine in a complex manner due to the
iterative nature of the coupling iterations, making it difficult to trace the effects of
constituent bias on the coupled model predictions. Partitioning allows for the
calibration and bias correction of constituent models using separate-effect experiments
through two unique approaches. The first of these (Figure 4(a)) involves coupling
constituent models followed by calibrating their output to separate-effect experiments
(see Farajpour and Atamturktur, 2014 for a demonstration of this approach). Herein, we
propose a new framework referred to as “bias-corrected partitioned analysis,” which
operates by first calibrating and bias correcting constituent models with respect to
their respective separate-effect experiments following coupling the models in a second
step (Figure 4(b)).

�A

�B

�A

�B

Step 2: 
Calibration 

Constituent model 

Separate-effect 
experiment 

Step 2: 
Calibration 

Constituent model Separate-effect 
experiment 

Step 1: 
Coupling 

yA

yA Step 1: 
Calibration 

Constituent model 
Separate-effect 

experiment 

yByB

Step 1: 
Calibration 

Constituent model 
Separate-effect 

experiment 

Step 2: 
Coupling 

(a) (b)

Figure 4.
Integration of

coupling and model
calibration using
separate-effect
experiments

159

Coupled multi-
scale plasticity

models

D
ow

nl
oa

de
d 

by
 C

le
m

so
n 

U
ni

ve
rs

ity
 A

t 0
5:

36
 2

9 
M

ay
 2

01
6 

(P
T

)



This second framework has the advantage of reducing uncertainties and correcting for
bias before they are allowed to spread throughout the coupling process and
contaminate the coupled model predictions (which are typically what is used for
decision making). As a final step, validation is completed for the coupled domain using
the integral-effect experiments. While this manuscript focusses on the correction of
constituent models, the framework may also be expanded to correct for interface bias
(recall ΨA−B in Figure 1), should appropriate integral-effect experiments be available.
Interface bias is introduced due to omitted or misrepresented relationships between
constituents. These improperly defined relationships may be due to missing dependent
parameters that should be transferred between models.

4.3 Conceptual demonstration of bias-corrected partitioned analysis
Consider two models representative of two domains (ΩA and ΩB) coupled through the
iterative exchange of outputs using a Newton-Raphson scheme (as shown in Figure 6).
Let us take ΩB as a biased model and ΩA as a bias-free model. Figure 5(a) illustrates the
biased predictions ofΩB compared to a rich set of separate-effect experiments (our closest
representation of truth). Here, we train a discrepancy function (dashed line shown in
Figure 5(b)) using the bias inferred at tested settings (stars shown in Figure 5(b)).

Note in Figure 5(b) that the discrepancy is defined for all values of xB, control
parameter for ΩB. This discrepancy function is used to correct the predictions of ΩB,
which serves as a dependent input parameter for ΩA. In each iteration, the predictions
of ΩB are corrected by the value corresponding to the given xB in the discrepancy
function (Figure 6). Once this bias correction is applied concurrently with the coupling
scheme, predictions of the coupled model are improved. Here, the coupled predictions
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are made in the domain of ΩA, but require iterations between the models. A few
important observations may be garnered from Figure 7. First, the coupled predictions
shown for the domain of ΩA are altered due to the bias in ΩB, even though ΩA was an
initially correct model. Hence, the degrading effect of bias is not limited to the domain in
which it originates. Rather, much like an infectious disease, the constituent bias makes
its way through the coupling interface to diminish predictive capabilities in the other
domain. Second, in our academic example, bias correction ofΩB at every iteration in the
coupled model almost completely accounts for inaccuracies in the constituent and
recovers a significant amount of error in the coupled model, bringing predictions of the
coupled model to less than 1 percent error, in comparison to the 15 percent error prior to
bias correction.

5. Meso- and macro-scale coupling of VPSC and ABAQUS FE codes
5.1 Meso-scale VPSC code
The VPSC code, developed by Lebensohn and Tomé (1993), predicts the texture
evolution of highly anisotropic polycrystalline material. VPSC operates under the
assumption that a polycrystalline material can be represented by a set of orientations of
individual single-crystal grains, each of which can then be treated as an inhomogeneity
embedded within a homogeneous effective medium. With this assumption, interaction
equations are formulated to linearly relate the stress and strain rate of a single grain to
the stress and strain rate of the surrounding effective medium. The VPSC formulation
uses an integral approach to update the grain shape effect and evolution of the
polycrystal orientations with deformation, enabling the prediction of texture evolution
for the metallic materials. Applying viscoplastic deformation, the stress-strain response
and microstructure evolution are predicted at the single crystal using the following
constitutive relationship (Tomé et al., 2001):

_evp ¼ _go
X
s

ms
ij

ms : s0

ts

� �n

(7)

where s is the number of active slip and twinning systems, n the inverse of the rate
sensitivity, τs the threshold shear stress, ms the Schmid tensor, σ′ is the Cauchy stress

−2 −1 0 1 2

20

40

60

80

Control Setting, x

C
ou

pl
ed

 M
od

el
 P

re
di

ct
io

ns

Experiments
Biased Model
Bias-Corrected Model

Figure 7.
Improvement in
coupled model

predictions achieved
through bias-

corrected partitioned
analysis

161

Coupled multi-
scale plasticity

models

D
ow

nl
oa

de
d 

by
 C

le
m

so
n 

U
ni

ve
rs

ity
 A

t 0
5:

36
 2

9 
M

ay
 2

01
6 

(P
T

)



deviator, and _evp the viscoplastic strain-rate. The threshold shear stress, τs in
Equation (7) is affected by the deformation modes active during hardening. A reference
hardening function is defined by:

ts ¼ ts0þ ts1þys1G
� �

1�exp �ys0G
ts1

� �� �
(8)

where ts0, y
s
0, y

s
1, and ts0þts1 are the initial critical resolved shear stress (CRSS), initial

hardening rate, asymptotic hardening rate, and back-extrapolated CRSS, respectively.
Each of these parameters takes a different value for each active deformation system.
Anisotropic zirconium at room temperature has three active slip and twinning modes
(prismatic, pyramidal, and tensile twinning) each with a hardening function of its own
containing the four hardening parameters. These hardening parameters are poorly
known and thus must be calibrated against physical experiments.

5.2 Macro-scale ABAQUS code
At the macro-scale, ABAQUS calculates the total strain increment, Δε, which can be
partitioned into elastic, Δεel, and viscoplastic, Δεvp components:

De ¼ DeelþDevp ¼ C�1 : DrþDevp rð Þ (9)

For each iteration at a given strain increment, Δε, the stress increment, Δσ is
determined:

Dr ¼ rtþDt�rt (10)

5.3 Coupling between VPSC and ABAQUS
Using a Newton-Raphson iterative scheme, the VPSC and ABAQUS codes are coupled
with the following convergence criteria X(Δσ)¼ 10−6 (i.e. Δε≈ΔεFE):

X Drð Þ ¼ De�DeFE ¼ C�1 : DrþDt_e pxð Þ
vp rtþDr

� ��DeFE (11)

After convergence in stress equilibrium is reached at each time step, viscoplastic strain-
rate _evp, hardening variables and crystal orientations q, and tangent stiffness matrix C,
are accepted for every integration point, allowing ABAQUS to repeat the iteration
process at the next time step, t+Δt, with an increased displacement, u+Δu as
illustrated in Figure 8.

Coupling between the two scales occurs as the FE model provides VPSC
with updated stress σ, and VPSC provides the FE model with updated viscoplastic
strain-rate, _evp, hardening variables and crystal orientations q, and tangent stiffness
matrix C, as shown in Figure 8. Specifically, the VPSC model supplies a texture-
sensitive constitutive relationship between stress and viscoplastic strain-rate (see
Equation (7)). This constitutive relationship takes both slip and twinning between
crystals into account, yielding an accurate representation of the time-dependent,
irreversible deformations of the polycrystalline material (Tomé et al., 2001). Figure 9
illustrates the domain of each of the models and their corresponding separate- and
integral-effect experiments.
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6. Experimental and numerical campaign
Separate-effect experimental data for calibration of the VPSC meso-scale constituent
model are collected in a series of uniaxial tension-compression tests and integral-effect
experimental data for validation of the coupled model are gathered from the four-point
bending test of a zirconium beam. Cylinders used in the uniaxial test, as well as the
beam used in the four-point bending test, are cut from a plate of zirconium processed by
clock rolling and vacuum annealing processes to produce highly textured properties
(Kaschner et al., 2001).

6.1 Uniaxial tension and compression tests of a zirconium cylinder: separate-effect
experiments and VPSC model
Uniaxial tension/compression tests are completed on cylindrical zirconium specimens
to collect stress and plastic strain data for in-plane compression (IPC) and in-plane
tension (IPT). Tensile specimens are cut to a nominal gauge length of 17.7 mm and a
diameter of 2.25 mm; compression samples are cut to a length of 5 mm and a diameter
of 5 mm. Tests are conducted at a temperature of 293 K with a strain rate of 0.001 s−1.
Zirconium samples are deformed up to a plastic strain of 25 percent along the testing
direction (Tomé et al., 2001). Loading curves for IPC and IPT collected from the
experimental tests are shown in Figure 10.

ABAQUS ABAQUS

VPSCVPSC

time= t time= t+�t

displacement=u+�udisplacement=u

�, C, q

��
�vp�vp
C
q

C
q

· ·

Figure 8.
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Section 5.2
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Section 5.1
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y A(h)
Section 6.2
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yV(�)
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Figure 9.
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coupled VPSC-
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cladding materials
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6.2 Four-point bending of a zirconium beam: integral-effect experiments and multi-
scale FE-VPSC model
A zirconium plate is cut into beams with dimensions of 6.35× 6.35× 50.8 mm and then
vacuum encapsulated and heat treated, producing an equiaxed grain structure
containing grains with a mean size of approximately 25 μm. Roller bearings and
hardened steel dowel pins are placed at four locations within the frame to minimize the
friction that may be produced due to large strains and high forces. Load is applied by
upper pins located 6.35 mm to the left and right of the center, which are displaced 6 mm
while the lower pins, located 12.7 mm from the center on both sides, remain stationary.
Experiments are performed such that the nominal strain-rate at the outer fibers of the
beam is 10−3 s−1 (Kaschner et al., 2001).

Tests are conducted with the beam being bent parallel to the crystal axis. Prior to
bending the beam is marked with a 161 point grid, composed of seven columns with
23 indentions each. Columns are spaced 1.016 mm apart and each point in the column
spaced 0.254 mm apart. After bending, the displacement of these points is measured to
calculate the experimental strain. Plastic strain is measured at the centerline of the
beam after the maximum displacement is reached (Figure 11). The initial and final
positions of the dot grid, measured using dot-matrix deposition and mapping, are used
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to calculate strain at each marked point of the beam face. Figure 12 highlights the dot
matrix used for strain measurements on the test specimen.

The ABAQUS FE model simulating macro-scale behavior is composed of a mesh of
32× 4× 4 C3D20R element with 20 nodes (Figure 13). The VPSC polycrystal model is
integrated in the FE model using a user-defined material subroutine at every Gauss
integration point (Knezevic et al., 2012) as previously explained in Section 5.3.

7. Bias-corrected partitioned analysis of multi-scale plasticity model
7.1 Calibration of the VPSC model
For our application in modeling the time-dependent irreversible deformation of a
zirconium beam, the stand-alone VPSC model is calibrated using separate-effect
experiments, i.e. uniaxial tension and compression tests of a zirconium cylinder
described earlier in Section 6.1. As illustrated in Figure 14, the control parameter is
stress, σ at varying levels of which, the strain-rate measurements are available.

Potential parameters for calibration are the 12 hardening parameters as well as the
parameter n, representing the inverse of rate sensitivity parameter, seen in Equation (7).
Among these candidate parameters, appropriately selecting the parameters for
calibration is critical. Here, we evaluate the sensitivity and uncertainty of parameters
in a manner reminiscent to the parameter identification and ranking table Hegenderfer
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and Atamturktur, 2013). A parameter that exercises little influence on the available
experiments will not be properly calibrated and possibly cause ill-conditioning – on the
other hand, a parameter whose value is known with little uncertainty should not be
calibrated. Hence, the most logical approach is calibrating only those parameters that are
sensitive to available experiments and uncertainty to the analyst. The inverse of rate
sensitivity parameter, n, in Equation (7) is not only poorly known but also has been
shown to be significantly influential on the VPSC model predictions of stress and texture
in previous studies (Atamturktur et al., 2013, 2015a, b). Hardening parameters for the
threshold shear stress (Equation (8)) are also uncertain. The sensitivity of these
parameters is determined through a main-effect analysis of variance test of the 12
hardening parameters. Results of the sensitivity analysis indicate τ0, τ1, and θ1 in the
prismatic slip system to be the main contributors to the variance in model outputs, as
shown in Table I, effectively reducing the problem to the calibration of four parameters (n
and prismatic τ0, τ1, and θ1).

Herein, MCMC sampling is used to explore the parameter domain, drawing 10,000
samples. To reduce the computational demand of MCMC, a fast-running GPM as
explained in Section 4.1 is used as an emulator in place of the VPSC model. The GPM is
trained with 100 VPSC runs (50 in the tension range and 50 in the compression range)
obtained using Latin hypercube sampling to ensure the parameter domain is
adequately explored. Prior distributions of hyperparameters for the model GPM
(Equation (5)) and discrepancy GPM (Equation (3)) proposed in Gattiker (2008) are used.
Uniform prior distributions are assigned for the four calibration parameters, with
upper and lower bounds as listed in Table II. Posterior distributions of the four
calibration parameters are shown in Figure 15 and the main statistical properties of
these posterior distributions are listed in Table II. Figure 16 illustrates the
improvement obtained in the stand-alone VPSC model predictions after calibration.

7.2 Implementation of bias-corrected partitioned analysis
Mean values of the posterior distributions for uncertain parameters of the meso-scale
model (Table II) are entered as the input for the coupled multi-scale VPSC-ABAQUS

Parameter R2 value (%)

Prismatic slip
τ0 41.5
τ1 30.50
θ0 0.60
θ1 26.90

Tensile twinning
τ0 0.69
τ1 0.32
θ0 0.08
θ1 0.01

Pyramidal slip
τ0 0.03
τ1 0.01
θ0 0.00
θ1 0.01

Table I.
Sensitivity analysis
of VPSC model
hardening
parameters
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model, effectively improving the agreement between coupled model predictions and
integral-effect experiments as shown in Figure 18. While calibration improves the
agreement to experiments, the model continues to underestimate the plastic strain
particularly at the extremes of the distribution, as detailed in Table III. However, note
that thus far, bias in constituent models’ predictions is not accounted for. A portion of
this underestimation can be explained by the discrepancy remaining between VSPC
simulations and separate-effect experiments even after calibration.
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Prior Posterior
Parameter Lower bound Upper bound Mean SD

n 0 20 13.43 2.58
Prismatic τ0 0 28 23.24 4.66
Prismatic τ1 0 24 19.52 3.15
Prismatic θ1 0 80 71.45 7.55

Table II.
Prior and posterior
mean for calibration

parameters
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It should be noted that the separate-effect experiments available are only for the
in-plane crystal orientation, which relates to a single direction of the stress and strain
tensors of the numerical model. Therefore, bias correction in this study is only applied
in this direction. The discrepancy model to represent this bias is inferred with stress as
the control variable and plastic strain as the response feature. This inference is
completed at the same time as the uncertain input parameters are calibrated through
the procedure explained previously in Section 4. Discrepancy is accounted for through
bias correction of the meso-scale constituent model at every iteration, such that for
every calculated stress point, the corresponding plastic strain is corrected (Figure 17).
The discrepancy function trained for VPSC model is used to correct plastic strain
according to the stress supplied by the macro-scale ABAQUS model. In this case, a
constant correction factor is applied for the tensile and compression regions, where
plastic strain is increased by 40 percent in tension and decreased by 10 percent in
compression. The calibrated and bias-corrected VPSC-ABAQUS model predictions are
shown in Figure 18. Also shown in Figure 18 is the prediction uncertainty determined
by considering the uncertainty remaining in calibrated parameters (by one standard
deviation). Most notably, the bias-corrected model with mean calibration parameter
values from Table II is shown to improve predictions at the maximum tensile and
compressive plastic strains, which are the locations of highest concern for analyzing
the failure of this system (Table III).

In this particular application, a significant limitation is the presence of multiple
dependent parameters between VPSC to ABAQUS constituent models, namely,
viscoplastic strain-rate, _evp, crystal and texture properties, q, and tangent stiffness

Maximum plastic strain Percent difference from experiments
Top of beam
(compression)

Bottom of beam
(tension)

Top of beam
(compression) (%)

Bottom of beam
(tension) (%)

Experiment −0.148 0.194 – –
Uncalibrated model −0.062 0.066 81.9 98.4
Calibrated model −0.078 0.082 61.9 81.1
Calibrated model with
bias correction −0.086 0.125 52.9 43.2

Table III.
Predictions of
maximum tensile
and compressive
plastic strains
compared with
experimental
measurements

ABAQUS ABAQUS

VPSCVPSC
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Figure 17.
VPSC-ABAQUS
coupling interactions
with discrepancy
accounted for in
the meso-scale

168

MMMS
12,1

D
ow

nl
oa

de
d 

by
 C

le
m

so
n 

U
ni

ve
rs

ity
 A

t 0
5:

36
 2

9 
M

ay
 2

01
6 

(P
T

)



matrix, C, (recall Figure 8) and the absence of separate-effect experimental data
available for each of these dependent parameters. Therefore, the other directions of the
viscoplastic strain-rate tensor, as well as the crystal orientations and tangent stiffness
matrix, are left uncorrected, thus limiting the extent to which the bias in constituent
predictions can be remedied. Despite this limitation, the effect of partially correcting for
discrepancy at the meso-scale propagates to produce improvements in the predictions
of the coupled model. It is expected that if experiments were to be available for all
components of the coupling, predictions would further improve and reach better
agreement with experiments.

To demonstrate this aspect, consider a pair of numerical equations containing
multiple dependent parameters being coupled as to represent a scenario similar to that
of the VPSC-ABAQUS coupled model. As shown in Figure 19, parameters B and C are
each dependent upon parameter A, which is likewise dependent upon parameters
B and C. Synthetic experiments are created by using “true” values for A, B, and C,
while biased simulations are created by altering the physics behind B and C. Hence, the
meso-scale constituent model is taken to be biased.

Let us consider two scenarios. In the first scenario, only experiments for output B
are available and in the second scenario, experiments are available for both B and C,
allowing for full correction of the model. Figure 20 shows the results for the first
scenario. When only B is corrected, the coupled simulation is not able to achieve
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agreement with the experiments, as the average error in the coupled model predictions
is only reduced, though not entirely corrected. After correcting both dependent outputs
B and C, however, the simulation and experiments show improved agreement
(assuming the quality and quantity of separate-effect experiments is sufficient for
accurately training discrepancy).

8. Conclusion
With coupled modeling coming to the forefront of engineering practices as systems
become more and more complex, a systematic framework for calibration and bias
correction of partitioned models stands to make a significant impact in many
engineering fields. Each constituent of a coupled model has its own unknown
parameters and missing physics and engineering phenomena, resulting in bias and
uncertainty that may impede the predictive capability of the coupled model, if left
unaccounted for. Additionally, neglecting to account for bias during calibration may
result in parameters being calibrated to incorrect values to compensate for bias.

This paper demonstrates that calibration and bias correction of the constituent-level
model through the use of separate-effect experiments mitigates the accumulation of
error and improves the predictive capabilities of not only the constituents, but also the
coupled model. The application presented herein illustrates a real-life scenario where
bias-corrected partitioned analysis utilizing separate-effect experiments improves the
predictive capability of a multi-scale plasticity model. Implementation of the bias-
corrected partitioned analysis paradigm allowed a 38.5 percent improvement in the
fidelity of predictions for a highly anisotropic zirconium beam exposed to extreme
loading. The improvement obtained in this application demonstrates the capability of
the bias-corrected partitioned analysis framework to advance the predictive maturity of
complex multi-scale models, therefore instilling confidence in these models as the basis
for high-consequence decision making.

In complex systems, it is possible for constituent models to have multiple dependent
parameters. Within the bias-corrected partitioned analysis framework, more than one
dependent parameter involved in the coupling scheme requires not only sufficient
quantity and quality of experiments for the constituent, but more specifically
experiments related to each dependent parameter that is being transferred.
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When experiments are unavailable for some of the coupled parameters, only a partial
bias correction may be completed. Often times partial bias correction is better than no
correction at all. This procedure, however, should be done with much caution,
taking into consideration the possible consequences of neglecting to correct the
other parameters.

Aside from the biases and uncertainties in the constituents themselves, the coupling
process may also introduce its own spectrum of biases and uncertainties due to an
inability to perfectly model the physics of coupling operations. Implications of biases
and uncertainties introduced by the coupling interface have been neglected in this
study, but should be investigated in future work.
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Notes
1. Here, the term partitioned analysis (also commonly referred to as co-simulation) is used to

define constituent models developed independent from each other regardless of whether their
iterations advance in the same time step or not.

2. Herein “domain” is defined as the boundaries within which of each model is designed to
operate (e.g. separate domains representing fluid and structure behaviors in a fluid-structure
interaction problem).
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